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Abstract

This note reviews the replica symmetric solution of the SK model, including sufficiently detailed derivations, and then
shows the phase diagrams of the order parameters and free energy by numerical calculations. The author acknowledges
Prof. Hidetoshi Nishimori’s book [} for its introduction to the mean-field theory of spin glass, and Dr. Haozhe Shan’s
notes [21, which contain extensive derivations and greatly assisted the author in following the derivation.

1 Introduction

The Hamiltonian of the Sherrington-Kirkpatrick model reads [*/
H:_ZJUO-IO']_hZO-“ (1)
i<j i

where o; € {1,—1} are Ising spins, the interaction J;; between any two spins is a quenched variable with the Gaussian
distribution J;; ~ N'(Jo/N,J 2/N). The mean and variance are both proportional to 1/N to ensure the Hamiltonian is
extensive. The probability of each configuration is given by the Gibbs-Boltzmann distribution P(o) = exp(—BH)/Z,
where Z is the partition function. We denote Tr = 3, = ZUI: IPREE ZUN: 11, S0 that the partition function is expressed
as Z = Trexp(—fBH). The free energy F can be calculated by the partition function as F = —f3~! log Z. However, it is only
the free energy for a fixed interaction J sampled from the distribution. One not depended on any specific system sample
can be obtain by the average over the distribution of J, which is called the quenched average, or disorder average, or
configurational average, and denoted by (-) in this paper:

(F) = —% (logZ). @

The dependence of (logZ) on J is so complex that it cannot be solved directly, and this is where the replica method
comes into play.

2 Replica Trick

The replica trick is a mathematical technique based on the application of the formula

(logZ) = lim -1 .
n—0 n

€))

In this case, the replica average of the partition function can be written as

(z") ZJDJ Tr exp(ﬂZJijzn:Sf‘S;‘+[5hizn:Sf‘), 4

i<j a=1 i=1 a=1

(1] Nishimori, Hidetoshi, Statistical Physics of Spin Glasses and Information Processing: An Introduction (Oxford, 2001), chap. 1~3
[2] Replica calculations for the SK model, URL: https://hzshan.github.io/replica_method_in_SK_model.pdf
[3] D. Sherrington and S. Kirkpatrick, Solvable Model of a Spin-Glass, Phys. Rev. Lett. 35, 1792 (1975).
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where the explicit expression of the integral measure DJ is given by the distribution of J;;
N Jo)?
D= [[d7,; P(5;) Jo< ] [ a7y exp Z—Z—Jz =) |- (5)
i<j i<j i<j
Then, Eq. (4) is calculated as

<Z">ocexp|:ﬁhzzn15?:| Tr l_[{JdJij EXP|: 52 lJ ( +ﬁzn:S 1 J; :|} (6a)

i=1 a=1 i<j

)
sl

o< Tr exp { > ( B> ngs;‘sfs” + B, Zsf‘s;‘) +BhY > S8 (6b)
i<j i=1 a=1
1 N n
=Tr exp{ =3 ( B> (2 > sesesPsl + n) + ﬁJOZS“S“) +Bh Y > s¢ (6¢)
i<j a<f i=1 a=1
1 N n
=Tr exp{ >822 > sseslsl + = /32J2n +BJo . SES%| +ph Y. > s? (6d)
i<j a<p a i=1 a=1

_ (N-1)p*J%n 1 22 B b a
_exp[f Tr exp NZ J2 > sesesls! +/5JOZS°‘S +/3hZZS“ . (6e)

i<j a<p i=1 a=1

where the integral term in Eq. (6a) is calculated as

1 J C
ZfdJij eXp[_EﬁJ?J (J—Oz-f-ﬂ Elsia‘g]q)‘]ii] (7a)
a=

4mJj? J2 ZJO aca acach B N
=\ P (J4 /3255 + B2 Zssss (7b)
47TJ2 Jg aga 272 acach B
=\ ~ eXp(ZNJZ exp ﬁJOZS S+ /5 J Zslsjsls , (70)
and the following trick is used in Eq. (6¢)
Zsl“s]asfs’j =2 sasesPst +Z( a52)’ =25 sesusPs 4 n. @)
a<f a<p

I 2 :
Considering (2}, A;)" = 2 AZ + 20 AA; = DL AT+23 L AA) L.
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)

-

we have

272 bop [32 72 5 2 272 2 B2J%n
ZZS?SJ"SIS o Z(Zs;’si) RGO o Z(ngsf) —-——. o
a<p \ i

i<j a<p i a<f a<f




;

and
2 2
EDWR TR MNORIES A B3 3] L
i<j a a i i a a i

Thus Eq. (6e) is written as

<zn>o<exp[Nﬁfj2n}Tr exp | £L Z(Zs;"sf)2+ﬁj‘)Z(Zsa) LS| a

a<p i i=1 a=1

where the following approximation in the large N limit is used

eXp[(N —3iﬁszn B ﬁJzon] ~ exp(%) )

(13)

In order to linearize the quadratic term on the exponential, it is useful to introduce the Hubbard-Stratonovich transform,
an inverse application of the Gaussian integral, as follow

exp( ) f Fe p(—?)exp(xy) 14

Let x = BJvNq,p, and y = BJ >, S?Siﬂ/\/ﬁ, then we have

272

2 oo 2
B=J B dqap 2 12y, ap 272 B
ssP | =pJVN —B2JAN— + B4 sesP |, 15
exp Z i Si B TR B 5 T B 4up Z {5 (15)
Let x = /BJNm,, and y = /BJ/N Y}, S, then we have

exp%(ZS ) \/[a'J_Nf

Then Eq. (12) can be written as

1 sea 02 [ [oael Jom 1o 252 5,252 3o

—0 a<f a<p a

exp( BINm? + BJom, Zs;") . (16)

X exp 2Jzz:q ﬂZS“Sﬁ—F[jJOZm ZS”‘ exp[ﬂhZZSa] (17a)

a<f i=1 a=1

NpB2J%n B2J2N BJ,N
_exp[ :| | |dqaﬁ| |dm exp | —— Eﬂqiﬁ— 20 E m?
a< a

—00 a<fp

xTr exp | B2 > g, ,325"‘5’j +/SZ(J0m +h)ZS“ (17b)
a<f
NB*J*n 2J? J
—exp[ P } l_[ﬁdqaﬁl_[dm 2 €XP N( ﬂz z/;qiﬂ P OZm +logTre ) , (17¢)
—0 a< a<

where we define

L=p22 qupSes! +/32(J0m +h)Se, (18)

a<f



;

in Eq. (17b) and used

ﬁTr el = (Tr eﬁ)N =exp [N log (Tr eﬁ)] . (19)
i=1

In large N limit, the integral in Eq. (17c) can be calculated with the Laplace approximation, also known as the saddle-
point approximation, i.e.

f dm eNFm) N2 NFp(m') (20)
Let -
BJ BJ,
}':—TZqiﬁ—mei+logTreﬁ, @21
a<f a

and the result of the integral is

Np2J? 2J2N JoN
(Z™) o< exp ﬁ4 n_Fp 5 Zf;( ;ﬁ)2 _F 20 Z (m;)2 + NlogTr e* (22a)
a< a
_ /52.]2 B ﬁZJZ N 2 B % N2 l -
=expy Nn " o ;j (qaﬁ) o Za: (ma) + - logTr e (22b)
N B2 B2 .2 By L1 c
~1+Nn{ 2 o ;5( ) Za:( nlogTre (220)

where we used Taylor expansion in Eq. (22c¢), and q;ﬂ, m;, = argmax {qup.ma} F. Through %}' = %]—' =0, we arrive
at

1 2 1 Trefp2s? Tr S*SPe”
= logTr e£ = — P gegp 2 2~ 23
Qap B2J2 3qqup & B2J2  Tret Tr e£ (23)
1 1 Tre“pJ, Tr S%e*
= logTr eX = — reﬁ05“= "o © (24)
BJy, dm, BJ, Tref Tr e£

The free energy density f is finally written as

f= (F) 1 Zh-1_ -1 lim { P - . Z (q;ﬂ)z— %Z(m;)z + %logTr eﬁ} . (25)

ﬁ n—0 Nn pBrno| 4 2n 2n

a<f

3 Replica Symmetry Ansatz

To continue solving Eq. (25), we need to consider the dependencies of q,5 and m* for different replica index. A naive
idea is that they are independent of index, i.e. Va, 8, g5 = q, m, = m, also called replica symmetry ansatz. The replica
symmetric free energy is written as

1 2J2 BAJ*(n—1 J, 1 .
fas = 5 }E}J{ﬂ4 _b (: )qz - %mz + ;logTr e } (26a)
1 (p2J2
=_E{ﬁT(1 +q%)— pJ 0m +11r% log Tr e© }, (26b)

where £* = 2729 Y, S*SP + B (Jom +h) 3, S°.
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The final item is calculated as

1 oo 1 272 B2 a
HlogTre —;logTr exp{ J (Z ) J qn+ﬁ(J0m+h)ZS (27a)

a

:%]og{exp( 7% )Tr exp|: B2J%q (ZS“) +/3(J0m+h)ZS“]} (27b)

2J2qn
- —]og{exp( Tr | Dzexp (ﬁszZs“ +p (J0m+h)ZS“)} (270)
= %logJDz exp{nlog[Zcosh (ﬂH(z))]—gﬂszq} (27d)
N%log{l—knJ.Dz logl:Zcosh( HA(z )]—gﬁszquz} (27e)
~ f Dz log [2 cosh (ﬂﬁ(z))] — %[32J2q , 276)

where we used Hubbard-Stratonovich transform again in Eq. (27b) and reparameterized 2 by a standard Gaussian variable
z, rewriting integral variables as Gaussian integral measures

exp|: B2J%g (Zs )} sz\lwe p( & B2J> )exp( szquS ) (28a)
«/_ xp(——)exp(ﬁszZs ) (28b)

= J Dz exp (ﬂJ ﬁzZS“) . (28¢c)

The last item in Eq. (27c) is calculated as

Tr f Dz exp (ﬁJﬁzZS“ +B (Jom+ h)ZS“) = f Dz Tr exp [ZS“(ﬁJﬁz +B (Jom+ h))] (29a)

= J Dzl_[Tr exp [S“ﬁﬁ[(z)] (29b)
a=1
= f Dz {2 cosh (/SPI(Z))}H (29¢)
= f Dz exp {nlog[z cosh (ﬂﬁ(z))]} . (29d)
where we defined H(z) = J/qz + (Jym+ h).
Finally, the replica symmetric free energy is
1 (B2 . 1
frs = _E {ﬁT (1 + q2) ﬂ 0m2 rlllng.) {J Dz log[2cosh([3H(z))] - Eﬂszq}} (30a)
BJ? Jo 1 .
= Ve (q—1)7*+ Emz - B J Dz 10g[2cosh (ﬁH(z))] . (30b)
Through
%fRS =—pJom+ f Dz (tanh fH(2)) - pJy =0, 31D
o, BT 1(2)) - Py =
3_qu5 = T(q 1)+ f Dz (tanh SH(z)) Zﬁz =0, (32)



;

we obtain a set of closed equations, called saddle point equations
m= f Dztanh BH(z), (33)

g=1-— J Dzsech? BH(z) = f Dztanh? BH(z). 34)

4 Phase diagram

Considering a simple case where h = 0, we use numerical methods to iterate Eq. (33) and Eq. (34), and then calculate
the free energy Eq. (30b) with the fixed points of m and g. The results of order parameters m and q are shown in Fig. 1,
which (especially the interaction steps) recover the well-known phase diagram of the SK model as shown in Fig. 2(a) [4].
The free energy density with different J, and T is shown in Fig. 2(b).

Due to the Frustration, the spin in the SK model is frozen at low temperature, yet remains highly disordered, with
the order parameter m = 0. But this is a phase different from the paramagnetic phase (also m = 0) and is called the spin
glass phase. In short, m # 0 identifies the ferromagnetic phase, and the EA order parameter q is introduced to distinguish
between the paramagnetic phase (¢ = 0) and the spin glass phase (q # 0).
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Figure 1: The results of the replica symmetric solution for the SK model by numerical iteration.
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Figure 2: The phase diagram of the SK model.

[4] Nishimori, Hidetoshi, Statistical Physics of Spin Glasses and Information Processing: An Introduction (Oxford, 2001), p. 20
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