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Abstract

We analyzed the stability of Chua’s circuit by equilibrium point analysis and
lyapunov exponent, and observed the obvious chaotic phenomena such as limit cycle,
single attractor and double attractor through numerical calculation, simulation and
experiment respectively. In addition, we also analyzed another simple chaotic circuit
in the same way and observed some chaotic phenomena, such as double attractors
and double periodic bifurcation.
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1 Introduction

Since the meteorologist Lorenz discovered the first chaotic attractor in 1963, the
research and application of chaos theory have made great progress in the field of nonlinear
science. Chaotic motion is extremely sensitive to the initial value, and the extremely small
change of the initial value of the system will cause great changes in the oscillation output
of the system. With the development of computational science and social science, the
unpredictability and regularity of chaos make it a hot research topic in many disciplines
such as physics and mathematics.

Chaotic circuit is one of the important ways to study chaos theory. Since Leon O.
Chua put forward Chua’s circuit in 1983, the related research on modified Chua’s circuit
and chaotic system based on memristor!”’] has emerged one after another, and it has been

-1 Under certain parameters, Chua’s circuit can

applied to a wider range of fields

produce various rich and complex chaotic dynamic phenomena such as bifurcation, single

vortex and double vortex attractor, so it is widely used in chaos experiment teaching.
Since the development of Chua’s circuit, there has been a considerable interest in

the construction of autonomous chaotic circuits. Often, these modifications involve the
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addition of an extra energy storage element such as an inductor at the right place, thereby
adding a dimension to a predominantly 2-D limit cycle oscillator. In other cases, notably
the Colpits oscillator[''| a chaotic regime is already present for certain values of the design
parameters. Others directly translate a known chaotic system of differential equations to
electronics. The necessary nonlinear terms are implemented by using dedicated analog
multipliers as inl'? or operational-amplifier-based piecewise continuous functions! .

However, a very simple chaotic circuit was proposed in 2015 based on modifying
the Resistor-Capacitor phase shift oscillator!'"). This circuit does not need dedicated
nonlinear elements, and the operation does not depend on the dynamic properties of
the active components. Neither the component values nor the supply voltage is critical.
Additionally, the circuit has the attractive feature that the underlying core oscillator is
clearly visible in the structure. This makes it a great introductory pedagogical tool for
students interested in chaos.

Here, we analyze the dynamics of Chua’s circuit, and discuss the regular contained
in chaos through stability analysis and calculation of Lyapunov exponent. We observed
Chua’s circuit in three ways: numerical calculation, circuit simulation and experiment,
and all of them observed obvious chaotic phenomena such as limit cycle, single attractor
and double attractor. In addition, we also observed the simple chaotic circuit mentioned

above and made some analysis.

2 Chaotic circuit model and its dynamic analysis

2.1 The normalized equations of Chua’s circuit

A typical Chua’s circuit is shown in Fig.1. The circuit consists of a inductor L, two
capacitors C7 and Cy, a linear resistor R; and a nonlinear resistor Ry. The inductor L
and capacitor Cs form an LC oscillation circuit; the nonlinear resistor Ry is connected in
parallel with capacitor (' in a filter circuit to phase shift the sinusoidal signal generated
by the oscillator; the resistor R; regulates the phase difference between C; and Cy and

consumes energy. The whole circuit can be described by the following equations:

dUc, 1 1
P— - - 1
dUc, i, 1
= == Ueo, — U, 1b
i~ o T mao, Ve U (1b)
deg, 1
ETRRRALS e

f (Uny) = GalUc, + 3 (Ga — o) (e, + B| ~ [Ue, ~ B) (14)



Analysis, Numerical Calculation, Simulation and Experiment of Chaotic Circuits 3 /22

Nonlinear equivalent resistance Ry

(b)

Fig. 1: Diagram of a typical Chua’s circuit.

Fig (a): Circuit diagram of a typical Chua’s circuit. The inductor L, capacitors C; and Cq,
and resistor Ry are all linear components, and Ry is an active nonlinear resistor. A common
structure of realizing Ry by two triodes and some resistors has been drawn on the figure. Fig
(b): Volt-ampere characteristic curve of nonlinear resistor Ry .

Source: Both pictures are from paper!'”).

Among them, G, is the conductance of the inner interval, (G is the conductance of the

outer interval, and FE is the voltage of the turning point of the inner and outer interval.
Using Eq.(1) to discuss the dynamics of the circuit is troublesome. Let z = U;/FE,

y=Us/E, 2= Rir/E, a = RG,, b = RGy, a = Cy/Cy, B = R?*Cy/L, then the equations

can become a normalized and dimensionless system of nonlinear equations:*

t=aly—z— f(zx))

y=x—y-+=z

Z= =Py
fl@)=br+Lia—-b)(lz+1]— |z -1

(2)

According to Eq(2), we can easily carry out numerical calculation based on MATLAB
(see Appendix B.1 for the code of numerical calculation). According to the component
parameters of the actual circuit, we take a = —1.2768,b = —0.6888, keep a@ = 8 un-
changed, and get different chaotic phenomena when [ takes different values (as shown in
Fig.2). Note that in order to get the left single attractor and the right single attractor,
we need to set different initial conditions, which have been marked in the illustration, and
other images that are not marked have adopted initial values xg, yo, 20 = (1,0, 0).

Generally speaking, with the increase of 3, that is, the increase of R in the circuit,

we will observe straight lines, limit cycles, double attractors and single attractors (left or

Here I have to point out a typo in our lab lectures: in the third lecture of this experiment, the first

formula of Eq.(2) is written as & = a(y — ) — f(z).
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right, depending on the initial conditions and symmetry of the circuit) in turn.

o
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Fig. 2: numerical calculation of normalized Chua’s circuit equations.

(a) straight line, 8 = 0.1 (b) left single attractor, initial value zg,yo,20 = (—1,0,0) and
B = 14.7 (c) right single attractor, initial value o, yo, 20 = (1,0,0) and 8 = 14.7 (d) limit
cycle, 8 = 19.35 (e) three-dimensional double attractor, 8 = 13.6  (f) projection of double
attractor on xy plane (g) projection of double attractor on xz plane (h) projection of double

attractor on yz plane.

2.2 Stability analysis of equilibrium point and timing diagram

From Eq(2), we can see that the nonlinear term of the Chua’s circuit equation is a
segmented linear function, so we can divide the phase space into three linear regions for
analysis, which are
Dy ={(z,y,2) | v > 1}
Do ={(z,y,2) | -1 <z <1} (3)
Dy ={(z.y,2) |z < 1}

Let £ =0,y = 0,2 = 0, we can get three equilibrium points as
Pt =(1.89,0,—1.89) € D,
P%=(0,0,0) € Dy (4)
P~ =(-1.89,0,1.89) € D_,

Fig.3 shows the timing diagrams of x, y, and z for § = 12.25 and § = 20. = 12.25
is a double attractor, and it can be seen that x and z oscillate between the equilibrium
points of 1.89 and —1.89, and y oscillates around the equilibrium point 0. for g = 20, =z,

y, and z oscillate around their first equilibrium point, respectively.
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Fig. 3: Timing diagrams of z, y, and z. (a) 8 =12.25 (b) 8 = 20.
x, y, and z oscillate around the expected equilibrium point for different values of 5, and xz and

z oscillate in opposite positions, which is also consistent with the results expected from Eq.(4)

We also observe the timing diagrams when the [ is very small and very large. =z,
y and z converge to the equilibrium point 0 when § < 9.85, while they oscillate around
1.89, 0, and —1.89 when S > 15.21, respectively.

A more detailed analysis!'? shows that the equilibrium points P+ and P- are the
saddle focal points of index 2. P* and P~ themselves consist of a stable component
pointing axially toward the equilibrium point and an unstable component leaving the
equilibrium point radially. The joint action of these two components of motion causes
their phase trajectories to form a radially expanding and axially contracting spiral motion.
Since the speed of radial expansion is much smaller than the speed of axial contraction,
a vortex coil is formed. The equilibrium point P° is the saddle focus of index 1, which
consists of the unstable component leaving the equilibrium point in the axial direction and
the stable component pointing to the equilibrium point in the radial direction. The joint
action of these two motion components makes its phase trajectory form a spiral motion
of radial contraction and axial expansion. Since the speed of radial contraction is much
smaller than that of axial expansion, the bond band is formed as the radius of the spiral
tends to zero as time increases.

When 9.95 < 8 < 10.34, assuming that the initial position of the phase trajectory
is in the D; region, an outwardly expanding vortex will be formed in the D; region, and
with the increasing radius of the vortex, when the trajectory reaches the critical plane,
it will cross the plane into the D, region, form a bond band in the D, region, and cross

another critical plane and enter the D, region to form the vortex, and then from the
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Dy region through the above Then, the vortex enters the D; region through the above
process, and the double vortex attractor is formed in this way. (see Fig.4(a))

However, when 10.34 < 8 < 15.21, the initial position of the phase trajectory is in
D region, and the vortex will be expanded outward in D; region, but with the increasing
radius of the vortex, when the trajectory reaches the critical plane, it will not cross the
critical plane, but will be turned back and return to D; region again, and so on, forming

a single vortex attractor. (see Fig.4(b))

TYYIT Y T
NI -
SRRk

0
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 3500

—

time steps time steps
(a) (b)

Fig. 4: Timing diagram of  (a) double attractor (b) single attractor

The black solid line in the figure divides the different regions according to Eq.(3). For the case
of double attractor, x makes vortex motion in the D; and D_; regions, respectively, and crosses
the Dy region in a straight line. For the case of single attractor, when z leaves the initial region
(D1 or D_4) it immediately bends back and returns to the original region again. This explains
why we can only find one of the left single attractor or right single attractor in the experiments

and simulations.

2.8  Lyapunov exponential spectrum and chaos

Lyapunov exponent!' ") is a powerful tool to analyze chaos. It can judge whether
the two tracks will overlap or the gap will become wider in the following time by giving
a certain small disturbance to the initial value and then calculating the distance between
the two tracks. If the largest Lyapunov exponent is positive, it shows that the evolution
of the system will be different when the initial values are very different, that is, chaos
phenomenon. We use MATLAB to calculate the lyapunov exponent spectrum about [,

as shown in Fig.5, and the related code can be found in the Appendix B.2.
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Fig. 5: Lyapunov exponent spectrum of normalized Chua’s circuit about parameter 3.

B =995 = 10.34 and § = 15.21 divide Fig.5 into four regions. The first area
is before the double attractor is observed. At this time, there is no chaos phenomenon
and no positive lyapunov exponent in the circuit. The second small region is a double
attractor, followed by single attractor, and finally an unstable region, where limit cycles
sometimes appear.

Fig.5 clearly corresponds to the different phenomena in Fig.2, and tells us when
chaos will occur and when mutation will occur. More interestingly, we can see that the
lyapunov exponent in Fig.5 is not a smooth curve, but very tortuous. This is related to a
phenomenon that we accidentally found when tuning parameters: the circuit is unstable in
the state of double attractor and single attractor, and the circuit will oscillate between the
state of double attractor and single attractor when the g of different orders of magnitude
changes, which is a bit like some kind of self-similarity. Related discussions can be found
in the Appendix A.1.

3 Circuit simulation and experiment

We use Multisim to simulate Chua’s circuit according to Fig.6, and do experiments
according to the same circuit diagram. The comparison between simulation and experi-

ment is shown in Fig.7.
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Fig. 6: The circuit diagram used in the simulation. The parameters of components have been

marked in the diagram. The same circuit diagram was used in the experiment.

(e) R=1960Q

(b) R=15Q (d) R=983Q () R=1616Q

(2) R=1880Q (h) R=1808Q (i) R=1428Q (j) R=13890Q

Fig. 7: Comparison between simulation and experiment. The value of R7 corresponding to each
picture has been marked at the bottom of the picture. The red line is the simulation result, and
the purple line is the experimental result. In order to see more clearly, we adjusted the contrast

and sharpness of the experimental screenshots.
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In this circuit, two operational amplifiers (the right half of the circuit diagram) are
used as nonlinear terms. We can see that the two phenomena of straight line and limit
cycle are in good agreement with each other in experiment and simulation. However,
there are some differences between the values of R; in the simulation and experiment of
double attractor and single attractor. And in the experiment, our circuit prefers the left
single attractor, but it is difficult to call out the right single attractor. In Sec.2, we have
found that this is related to the initial conditions of the circuit. Moreover, because the
resistance of each resistor is not completely accurate in the experiment, the symmetry of

the circuit is also deviated.

4 Simple two-transistor resistor-capacitor chaotic oscillator

We choose a two-transistor resistor-capacitor chaotic circuit!"!! to do similar analysis,
numerical calculation, simulation and experiment again. The circuit is shown in Fig.8.
This circuit includes a transistor-based RC oscillator to which a small subcircuit is added,
directly interacting with the RC ladder itself. The purpose of the subcircuit is to add a
nonlinearity in the RC ladder.
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Fig. 8: Circuit diagram of the two-transistor resistor-capacitor chaotic oscillator.
R = 10kQ), Ry = 5k, Ry = 15k(), R3 = 30k(2, C' = 1nF, Cy = 360pF, and V, =5V



Analysis, Numerical Calculation, Simulation and Experiment of Chaotic Circuits 10 / 22

RC%:—vl <1+£—&(£)}%>+U2+2R§?&<g—i01+1}2?> (5a)
RC’% = —2uy +v1 +vBgE1 — ica2 R (5b)
RCdUQEl = —vpp1 +v2 —ip1 R (5¢)
(2R3 + Ry) Cs d”(ff? — —uBEs <2 + W) + v 4V, —iciR —ips (2R3 + R1)  (5d)

We simplify the circuit model and normalize it to get (see Appendix A.2 for detailed

discussion and derivation of simplification)

t=-2r—14y+a—hy(z,1+a+2x)
y=—-2y+x+z—hg(u,2/3(y+1))

(6)

Z=-z+y

a 1 =z 1
)= —ub — 4+ = Cha(z1
TU ub b+2+2+2 2h (z,14+a+x)

Where a = 25/3,b =1+ R3/R4, = 80, = 10a = 25/3, b =1+ R3/R4, a = 80, § = 10,
and h is defined as
o y) = min(yz,y) ,z >0 )
0 , <0
We use MATLAB to calculate Eq.(6) numerically. The related code can be found in
Appendix B.3. The whole system is four-dimensional, so we can’t show its phase space
intuitively. We choose some good three-dimensional and two-dimensional "projections”
to try to show the general shape of their phase space, as shown in Fig.1010.
A more intuitive and wonderful way is to observe the phase trajectory in vy —vogp; —

vope space. We didn’t successfully get this image by numerical calculation, but the

researchers in paper" got a good image by SPICE simulation, as shown in Fig.9.

Fig. 9: Three-dimensional view of the attractor in v1 — vog1 — voE2 space. [14]
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Fig. 10: Multi-angle projection of system phase space. b = 1.6818, which is a double attractor
state. (a) projection of four-dimensional phase space in zyu space; (b) projection in yu plane;

(c) projection in xy plane; (d) projection in xz plane; (e) projection in zu plane.

Then we carried out simulation and experiment, and the circuit diagrams used are
shown in Fig.11. Note that we have exchanged the roles of R; and R5. In Fig.8, the upper
component is a constant resistor and the lower component is a sliding rheostat, but in
Fig.11, they are exchanged.

It is estimated that the main oscillation frequency of this circuit is 44kHz, which
is so high that it is difficult to observe all clear phenomena in experiments and simula-
tions. Another difference is that we vog; as an observation point in both simulation and
experiment, but we failed to solve this variable in numerical calculation. Therefore, our
experiments and simulations can only roughly verify some obvious chaotic phenomena.
Fig.12 shows the limit cycle, double period bifurcation and multiple period bifurcation
of the circuit with the change of resistance. Fig.13 shows the state that the circuit has

double attractors.
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Fig. 11: (a) Circuit diagram of simulation; (b) Circuit diagram of experiment (Although it is a

difficult task to identify a complete circuit from it.)
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Fig. 12: (a) limit cycle; (b)critical state (about to enter the double attractor); (c¢)multiple period

bifurcation; (d) double period bifurcation. The simulation is above, and the experiment is below.
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Fig. 13: The state that the circuit has double attractors (a) experiment (b) simulation
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5 Conclusion and discussion

Firstly, we analyze the equilibrium point and its stability of the normalized Chua’s
equation, verify the equilibrium point with the timing diagram, and explain the causes of
single attractor and double attractor. Then we draw the largest lyapunov exponent spec-
trum of Chua’s circuit, and intuitively show the chaotic phenomenon in different intervals
of 8. We observed the chaotic phenomena of Chua’s circuit by numerical calculation,
simulation and experiment, including limit cycle, single attractor and double attractor.

We also analyze the two-transistor resistor-capacitor chaotic circuit, which is a fourth-
order autonomous hyperchaotic system. The dimensionless normalized equation is ob-
tained by simplifying the model, and then we observe the projection of phase space in
different dimensions and angles through numerical calculation, simulation and experi-
ment. The obvious chaotic phenomena of this circuit are limit cycle, double attractor,
single and multiple periodic bifurcation (only observed in simulation).

There are still some questions for further study. We found in simulation and ex-
periment that when adjusting the resistance, the circuit will have an effect similar to
"hysteresis loop”, that is, firstly adjust the resistance value of the resistor to a larger
value, and then adjust back to the original value, and the circuit state will be different.
We suspect that this is caused by nonlinear components such as operational amplifier,

capacitor or transistor, but what factors are related to it needs further exploration.
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Appendix A Supplementary material

A.1 State oscillation and self-similarity in Chua’s circuit

Fig.5 shows that the circuit will change from a double attractor to a single attractor
when [ is around 10.34. However, we find that this transition is not like "phase transition”.
Once it reaches a certain critical value, it has always been a single attractor, and before
that it will always be a double attractor. Instead, our simulation experiment shows that
Chua’s circuit will oscillate between these two States, even if beta is accurate to a very
low order of magnitude.

Fig.14~17 show the oscillates between single attractor and double attractor when 3

is accurate to different orders of magnitude.

B=14.306 p=14.307 p=14.308 p=14.309 p=14.310

Fig. 15: B~ 1073
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p=14.3006 B=14.3007 p=14.3008 B=14.3009 B=14.3010

Fig. 16: S~ 1074

p=14.30006 p=14.30007 f=14.30008 =14.30009 p=14.30010

Fig. 17: B~ 107°

We believe that this indicates that there seems to be some kind of self-similarity
in the Chua’s circuit. This conjecture comes from two considerations: (1) we observed
the Lyapunov exponential spectrum of § in the Chua’s circuit at different accuracies,
and they all oscillate constantly up and down similar to Fig.5; (2) the geometry of the
Tsai circuit double attractor in phase space seems to be of a fractional dimension, i.e., a
fractal character with geometric structure, which is easily associated with self-similarity.

Of course, the exact reasons for this need further research.

A.2 Simplification and derivation of circuit Eq.(5)

A simplified model of Eq.(5) can be derived, that has shown to still capture the

dynamics qualitatively. First, the base currents ip;» are assumed to be of negligible
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influence. Second, we assume the current through R3 does not load the collector of
()1 down very much. Under these assumptions, ig12 = 0, R3 > RI1, R, the system is
adequately presented by

duvy R R . R
RC% = —U1 (]_ + 2__R1) + () + ‘/202—}%1 — 1015 (8&)
dUg .
RC% = —2’02 + v +vBE1L — ZCQR (8b)
d
RC U;El = —UpE1 + Vs (8C)
dvpgs R3 v Vo o Ry
= — 1 - —_— £ _ -
R3C, 7 UBEz( + R4) + 5 + 5 T o1y (8d)

We use a strongly simplified and static piecewise linear transistor model:

: Vot
, min (GMl (vBE1 — V1), pR—lvl> ,UBE1 > V1
lc1 = (9&)
0 ;vBE1 < V1

oy = min (GM2 (vBE2 — Vr2), 1%) ,UBE2 > V2 (9b)
0 , Vg2 < Vr2.

This transistor model shows three distinct regions, a cutoff region where vggp < Vr , an
active region where there is gain, and a saturated region. In this simplified model we set
the threshold of conduction voltage V12 equal for both transistors at Vp = 0.6V. The
collector saturation currents in Eq.(9) are chosen such that the collector to emitter voltages
do not become negative. We set G ;1 = 16mA /V and G2 = 1mA/V, corresponding with
average transconductances. ”")

We nondimensionalize the system as follows

:Ul—VT :U2—VTZ_UBE1—VTUIUBE2—VT = t T:R302:108
|7 Vp Vi ’ Vr ’ RC’ RC o
v, 5 Rs

=—=— b=14+ == =Gy Ry =80 = Gy R = 10.

a v, 0.6’ +R4’ Q M1ity , B M2

This yields:
t=-2r—14y+a—hy(z,1+a+2x)

y=—-2y+z+z—hg(u,2/3(y+1))
(11)

i=—-z+y

a 1 =z 1
= — - —_ — — — =Ny ’1
TU ub b+2—|—2—|—2 2h (z,1+a+ux)

where h is defined as:

min(yz,y) ,z >0
hy(z,y) = (12)
0 , <0
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Appendix B Code for numerical calculation and drawing

B.1 Code for numerical calculation of normalized Chua’s circuit

y0=[1;0;0];
tspan=[0,200] ;
[t,y]l=ode45(@chua,tspan,y0) ;

plot3(y(:,1),y(:,2),y(:,3));
plot(y(:,1),y(:,2));
plot(y(:,1),y(:,3));
plot(y(:,2),y(:,3));

plot(1l:length(y(:,1)),flip(y(:,1)));
hold;

plot(1:length(y(:,1)),flip(y(:,2)));
plot(1:length(y(:,1)),flip(y(:,3)));

x11 = ones(length(y(:,1)));

x01 = - ones(length(y(:,1)));
%plot(l:length(y(:,1)),x11(:,1), 'black');
%plot(l:length(y(:,1)),x01(:,1), 'black');
xlabel("time steps");

ylabel("x & y & z")
legend({'x','y','z'},"Location", "best")
function dy_dt=chua(t,y)

m0=-1.2768;

m1=-0.6888;

a =8;

b =13.8;
dx_dt=ax(y(2)-y(1)-mlxy(1)- (@mO0-m1)* (abs(y(1)+1)-abs(y(1)-1))/2);
dy_dt=y(1)-y(2)+y(3);

dz_dt=-b*y(2);

dy_dt=[dx_dt;dy_dt;dz_dt];

end
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B.2 Code for numerical calculation of normalized simple chaotic circuit

tspan=[0,400] ;
y0=[0;0;0.1;-0.5];
[t,y]=0de45(@simple,tspan,y0) ;

plot3(y(:,2),y(:,3),y(:,4));
plot(y(:,2),y(:,4));

function dy_dt = simple(t,y)

a = 5/0.6;

b =1.6818;

h_alpha = ((1+a+y(1))=*(80*y(3)>(1+a+y(1)))+(80*y(3))*(80*y(3)<=(1+at+y(1))))*(y(3)>0);

h_beta = (((y(2)+1)*2/3)*(10xy(4)>((y(2)+1)%2/3))+(10*y(4))*(10%y(4)<=((y(2)+1)*2/3))
)x(y(4)>0);

dx_dt=-2*y(1)-1+y(2)+a-h_alpha;

dy_dt=-2*y(2)+y(1)+y(3)-h_beta;

dz_dt=-y(3)+y(2);

du_dt=-y(4)*b-b+a/2+1/2+y(1) /2-h_alpha/2;

dy_dt=[dx_dt;dy_dt;dz_dt;du_dt];

end

B.3 Code for calculating lyapunov exponent of Chua’s circuit

z=[1;
m0=-1.2768;
m1=-0.6888;
a=8;
dO=1e-6;
bs = linspace(14.25,14.35,100);
transient = 50;
for b=bs
params = [mO,m1,a,b];
1sum=0;
x=1;y=0;z=0;
x1=1+d0;y1=0;z1=0;
for i=1:100
[T1,Y1]=0de45(@(t,X) chua(t,X,params), [0 1], [x;y;z]);
[T2,Y2]=0de45(0(t,X) chua(t,X,params), [0 1], [x1;y1;z1]);
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nl=length(Y1) ;n2=length(Y2);
x=Y1(n1,1);y=Y1(n1,2);2z=Y1(n1,3);
x1=Y2(n2,1) ;y1=Y2(n2,2) ;21=Y2(n2,3) ;
dl=sqrt((x-x1) "2+(y-y1) ~2+(z-z1)"2);

x1=x+(d0/d1)*(x1-x) ;
y1l=y+(d0/d1) *(y1-y);
z1=z+(d0/d1) *(z1-z);

if i> transient
lsum=1sum+log(d1/d0);
end
end
Z=[Z lsum/(i-transient)];
end
z00 = zeros(100);
plot(bs,Z);
Y%hold;
%plot (bs,z00,"r");
xlabel('beta'),ylabel('Largest Lyapunov Exponents');

function dX = chua(t,y,params)

m0 = params(1);

ml = params(2);

params(3);

params (4) ;

dx_dt=a*(y(2)-y(1)-ml*y(1)-(mO0-m1)*(abs (y(1)+1)-abs(y(1)-1))/2);
dy_dt=y(1)-y(2)+y(3);
dz_dt=-b*y(2);

dX=[dx_dt;dy_dt;dz_dt];

end
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Appendix C Teacher’s signature
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